Commutation and The Uncertainty Principle

The Heisenberg Uncertainty Principle

A policeman pulls Werner Heisenberg over on the Autobahn for speeding.

Policeman: Sir, do you know how fast you were going?

Heisenberg: No, but I know exactly where I am.

I. Definition and Examples

The most general form of the Heisenberg Uncertainty Principle is

$$\Delta A \, \Delta B \geq \frac{1}{2} \left| \left\langle \left[\hat{A}, \ \hat{B} \right] \right\rangle \right| \,, \tag{1}$$

where \hat{A} and \hat{B} are Hermitian operators. The uncertainty ΔA in the physical observable A associated with the operator \hat{A} is defined by the relation

$$\Delta A = \left[\left\langle A^2 \right\rangle - \left\langle A \right\rangle^2 \right]^{1/2} \,. \tag{2}$$

The Heisenberg Uncertainty Principle can be evaluated for specific operators. As an example, consider $\hat{A} = \hat{p}_x$ and $\hat{B} = \hat{x}$. The commutator is $\begin{bmatrix} \hat{p}_x, & \hat{x} \end{bmatrix} = -i\hbar$. Then, the Heisenberg Uncertainty Principle (HUP) takes the form

$$\Delta p_x \, \Delta x \ge \frac{1}{2} \left| \left\langle \left[\hat{p}_x, \, \hat{x} \right] \right\rangle \right| \, .$$
 (3)

The commutator is

$$\left[\hat{p}_{\chi}, \ \hat{x}\right] = -i\hbar \ . \tag{4}$$

Then, the uncertainty principle becomes

$$\Delta p_{x} \Delta x \geq \frac{1}{2} \left| \left\langle \left[\hat{p}_{x}, \hat{x} \right] \right\rangle \right|$$

$$= \frac{1}{2} \left| \left\langle \psi \right| - i\hbar \left| \psi \right\rangle \right|$$

$$= \frac{1}{2} \left| - i\hbar \left\langle \psi \right| \psi \right\rangle \right|$$

$$= \frac{1}{2} \left\{ \left(- i\hbar \right)^{*} \left(- i\hbar \right) \right\}^{1/2}$$

$$= \frac{1}{2} \left\{ \left(i\hbar \right) \left(- i\hbar \right) \right\}^{1/2}$$

$$\Delta p_{x} \Delta x \geq \frac{\hbar}{2}.$$
(5)

Variance

• If ψ is not an eigenfunction of \hat{A} , then many values could be obtained if A is measured. The average value would be $<\!\!\hat{A}\!\!>$

$$\left\langle \left(\hat{A} - \left\langle \hat{A} \right\rangle \right)^2 \right\rangle$$
: The standard deviation from the average. The spread of the

measured values

$$\langle (\hat{A} - \langle \hat{A} \rangle)(\hat{A} - \langle \hat{A} \rangle) \rangle$$

$$= \langle \hat{A}^2 - 2\hat{A} \langle \hat{A} \rangle + \langle \hat{A} \rangle^2 \rangle$$

$$= \langle \hat{A}^2 \rangle - 2\langle \hat{A} \rangle \langle \hat{A} \rangle + \langle \hat{A} \rangle^2$$

$$= \langle \hat{A}^2 \rangle - 2\langle \hat{A} \rangle \langle \hat{A} \rangle^2$$

$$= \langle \hat{A}^2 \rangle - \langle \hat{A} \rangle^2$$

$$= \sigma_A^2$$

Useful integrals for particle in the box

$$\int \sin^2 bx \, dx = \frac{x}{2} - \frac{\sin 2bx}{4b}$$

$$\int x \sin^2 bx \, dx = \frac{x^2}{4} - \frac{x \sin 2bx}{4b} - \frac{\cos 2bx}{8b^2}$$

$$\int x^2 \sin^2 bx \, dx = \frac{x^3}{6} - \left(\frac{x^2}{4b} - \frac{1}{8b^3}\right) \sin 2bx - x \frac{\cos 2bx}{4b^2}$$

 \Longrightarrow

Definite Integrals (Most important). Use $b = \frac{n\pi}{a}$; $bx\Big|_{x=a} = \frac{n\pi}{a}a = n\pi$

$$\int_{0}^{a} \sin^{2} \frac{n\pi x}{a} dx = \frac{a}{2}$$

$$\int_{0}^{a} x \sin^{2} \frac{n\pi x}{a} dx = \frac{a^{2}}{4}$$

$$\int_{0}^{a} x^{2} \sin^{2} \frac{n\pi x}{a} dx = \frac{a^{3}}{6} - \frac{a^{3}}{4n^{2}\pi^{2}}$$

$$\int_{0}^{a} \sin \frac{n\pi x}{a} \cos \frac{m\pi x}{a} dx = 0, \forall n, m \text{ integers}$$

Demonstration of Uncertainty Principle

Using the above integrals, we can calculate the following

a) Normalize
$$\psi_n = C_n \sin \frac{n\pi x}{a}$$

$$C_n^2 \int_0^a \left(\sin \frac{n\pi x}{a} \right)^2 dx = C_n^2 \frac{a}{2} \equiv 1 \qquad C_n = C = \sqrt{\frac{2}{a}}$$

$$\implies$$
 Normalized particle in the box eigen states: $\sqrt{\frac{2}{a}}\sin\left(\frac{n\pi x}{a}\right)$

b) Calculate $\langle x \rangle$ for normalized $\psi_n(x)$:

$$\langle x \rangle = \frac{2}{a} \int_{0}^{a} \sin \frac{n\pi x}{a} \cdot x \cdot \sin \frac{n\pi x}{a} dx$$
$$= \frac{2}{a} \cdot \frac{a^{2}}{4} = \frac{a}{2} \qquad \text{center of the box}$$

c) Calculate $\langle x^2 \rangle$

$$\left\langle x^2 \right\rangle = \frac{2}{a} \int_0^a \sin \frac{n\pi x}{a} \cdot x^2 \cdot \sin \frac{n\pi x}{a} dx$$
$$= \frac{2}{a} \cdot \left(\frac{a^3}{6} - \frac{a^3}{4n^2 \pi^2} \right) = \frac{a^2}{3} - \frac{a^2}{2n^2 \pi^2}$$

d) Standard deviation in $\langle x \rangle$:

$$\sigma_{x}^{2} = \langle x^{2} \rangle - \langle x \rangle^{2}$$

$$= \frac{a^{2}}{3} - \frac{a^{2}}{2n^{2}\pi^{2}} - \left(\frac{a}{2}\right)^{2} = \frac{a^{2}}{12} - \frac{a^{2}}{2n^{2}\pi^{2}} = \left(\frac{a}{2\pi n}\right)^{2} \left[\frac{n^{2}\pi^{2}}{3} - 2\right]$$

e)
$$\langle P_x \rangle = \frac{2}{a} \int_0^a \sin \frac{n\pi x}{a} \left(-i\hbar \frac{d}{dx} \right) \sin \frac{n\pi x}{a} dx$$

$$= \frac{2}{a} \left(-i\hbar \frac{n\pi}{a} \right) \int_0^a \sin \frac{n\pi x}{a} \cos \frac{n\pi x}{a} dx = 0$$
f) $\langle P^2 \rangle = \frac{2}{a} \int_0^a \sin \frac{n\pi x}{a} \left(-i\hbar \frac{d}{dx} \right) \sin \frac{n\pi x}{a} dx$

f)
$$\left\langle P_x^2 \right\rangle = \frac{2}{a} \int_0^a \sin \frac{n\pi x}{a} \left(-\hbar^2 \frac{d^2}{dx^2} \right) \sin \frac{n\pi x}{a}$$

$$= \frac{2}{a}\hbar^2 \cdot \frac{n^2\pi^2}{a^2} \int_0^a \left(\sin\frac{n\pi x}{a}\right)^2 dx$$

$$= \frac{\hbar^2 n^2 \pi^2}{a^2} = \frac{h^2 n^2}{4a^2}$$
 (= 2mE_n, of course!)

$$\sigma(P_x) = \frac{hn}{2a}$$

We can test the Heisenberg Uncertainty Principle

$$\sigma_{x}\sigma_{p} = \frac{a}{2\pi n} \cdot \left[\frac{\pi^{2}n^{2}}{3} - 2\right]^{\frac{1}{2}} \cdot \frac{hn}{2a}$$
$$= \frac{\hbar}{2} \left[\frac{\pi^{2}n^{2}}{3} - 2\right]^{\frac{1}{2}} > \frac{\hbar}{2}$$